

EN Product Information

Elan-tron®

MC 4236/W 4236 100:8

(Epoxylite ® EIP 4236 RESIN/Epoxylite ® EIP 4236 HARDENER)

2-component epoxy potting compound

ELANTAS Beck GmbH

Grossmannstr. 105 20539 Hamburg Germany Tel +49 40 78946 0 Fax +49 40 78946 276 info.elantas.beck@altana.com www.elantas.com

ELANTAS Camattini S.p.A.

Strada Antolini n°1 loc. Lemignano 43044 Collecchio (PR) Tel +39 0521 304711 Fax +39 0521 804410 info.elantas.camattini@altana.com www.elantas.com

ELANTAS Deatech S.r.l.

Via San Martino 6 15028 Quattordio (AL) Tel +39 0131 773870 Fax +39 0131 773875 info.elantas.deatech@altana.com www.elantas.com

ELANTAS UK Ltd

Keate House 1 Scholar Green Road Cobra Court Manchester M32 0TR United Kingdom Tel +44 (0)161 864 1689 Fax +44 (0)161 864 6090 info.elantas.uk@altana.com www.elantas.com

Resin

Viscosity at:

15.000

25.000

mPas

Hardener Mixing ratio by weight Resin MC 4236 W 4236 100:8

Application: Encapsulation, sealing and impregnation of electrical and electronic components.

Manual and/or automatic casting. Under vacuum casting with automatic mixing/dispensing **Processing:**

devices. The system can be processed at room temperature or with the resin component pre-

heated to 40-50°C. Best results are achieved when the material is processed under vacuum.

Description: Two component self-extinguishing, filled, epoxy system. Thermal class H (180°C). Good

> electrical and mechanical properties. High thermal conductivity. The system is UL 94 V-0 and listed (File E143115 and E116643). The system is RoHS conform (European directive

> > IO-10-50 (EN13702-2)

2002/95/EC).

50°C

SYSTEM SPECIFICATIONS

			10-10-30 (LIV13/02-2)			_0.00
Density at:	25°C		IO-10-51 (ASTM D 1475)	g/ml	1,79	1,83
Hardener						
Viscosity at:	25°C		IO-10-50 (EN13702-2)	mPas	35	55
	т	YPICAL SYSTEM	CHARACTERISTICS			
Processing Data						
Mixing ratio by weight			for 100 g resin	g	100:8	
Mixing ratio by volume			for 100 ml resin	ml	100:15	
Resin Colour					Black	
Hardener Colour				Neutral		
Viscosity at: 25°C F	Resin		IO-10-50 (EN13702-2)	mPas	40.000	50.000
40°C				mPas	20.000	30.000
60°C				mPas	3.000	6.000
Density at: 25°C Hardener			IO-10-51 (ASTM D 1475)	g/ml	0,97	1,01
Pot life (doubled initial viscosity) 40°C		40°C	IO-10-50 (EN13702-2) (*)	min	20	30
`	,	60°C		min	10	15
Initial mixture viscosity at: 25°C			IO-10-50 (EN13702-2)	mPas	4.000	6.500
	40°C			mPas	2.500	4.000
	60°C			mPas	1.200	1.800
Gelation time	25°C (15ml;6	Smm)	IO-10-73 (*)	h	3	4
Gelation time	50°C 100ml		IO-10-52b (UNI 8701)	min	30	40
Demoulding time	25°C (15ml;6m	m)	(*)	h	10	12
Suggested curing cycles		(**)	24 hours 25°C or 6 hours at 50°C			

MC 4236/W 4236

TYPICAL CURED SYSTEM PROPERTIES

Properties determined on specimens cured: 24 h TA + 15 h 60°C

Surface				Briç	ght	
Density 25°C		IO-10-54 (ASTM D 792)	g/ml	1,70	1,74	
Hardness 25°C		IO-10-58 (ASTM D 2240)	Shore D/15	83	87	
Glass transition (Tg)		IO-10-69 (ASTM D 3418)	°C	40	50	
Linear thermal expansion (Tg -10°C)		IO-10-71 (ASTM E 831)	10^-6/°C	25	35	
Linear thermal expansion (Tg +10°C)		IO-10-71 (ASTM E 831)	10^-6/°C	105	125	
Flammability		IO-10-68 (UL 94 V-0)	mm	3,2		
Thermal conductivity		IO-10-87 (ASTM C518)	W/(m°K)	0,85	0,95	
Dielectric constant at:	25°C	IO-10-59 (ASTM D 150)		3,5	4,5	
Loss factor at:	25°C	IO-10-59 (ASTM D 150)	x 10^-3	35	45	
Volume resistivity at:	25°C	IO-10-60 (ASTM D 257)	Ohm x cm	1 x 10^15	8 x 10^15	
Dielectric strength	25°C	IO-10-61 (ASTM D 149)	kV/mm	18	20	
Tracking index		IEC 60112	CTI	> (> 600	
Flexural strength		IO-10-66 (ASTM D 790)	MN/m²	40	50	
Strain at break		IO-10-66 (ASTM D 790)	%	1,0	1,5	
Flexural elastic modulus		IO-10-66 (ASTM D 790)	MN/m²	5.000	6.000	
Tensile strength		IO-10-63 (ASTM D 638)	MN/m²	25	35	
Elongation at break		IO-10-63 (ASTM D 638)	%	0,8	1,6	

IO-00-00 = Elantas Camattini's test method. The correspondent international method is indicated whenever possible.

nd = not determined na = not applicable Conversion units:

1 mPas = 1 cPs

RT = TA = laboratory room temperature $(23\pm2^{\circ}C)$

1MN/m2 = 10 kg/cm2 = 1 MPa

for larger quantities pot life is shorter and exothermic peak increases

the brackets mean optionality

the maximum recommended operating temperature is given on the basis of available laboratory information. Users should make their own assessments to verify the real component thermal class which is the result of the applied construction technology and used protective materials.

MC 4236/W 4236

Instructions: It is advisable to pre-heat the resin at 50°C to make easier the application of the product. In pre-

filled products it is good practice to check and carefully rehomogenize the material if some settling is present. Add the appropriate quantity of hardener to the resin, mix carefully. Avoid air

trapping.

Curing Post-curing:

For a room temperature curing system post-curing allows fast stabilization of the material and obtainment of the best electrical and mechanical properties. During the curing process it is

advisable to avoid thermal variations higher than 10°C/hour.

Storage: Epoxy resins and their hardeners can be stored for one year in the original sealed containers

stored in a cool, dry place. After that period or if the material has been stored in anomalous conditions, pre-filled resins can be settled down and their use is possible, only if they are accurately re-homogenized with the help, if necessary, of a mechanical mixer. The hardeners are moisture sensitive therefore it is good practice to close the vessel immediately after each

use.

Handling precautions:

Refer to the safety data sheet and comply with regulations relating to industrial health and waste

disposal.

emission date:

September 2008

revision n° 00

The information given in this publication is based on the present state of our technical knowledge but buyers and users should make their own assessments of our products under their own application conditions.